Localized Probing of Gas Molecule Adsorption Energies and Desorption Attempt Frequencies
نویسندگان
چکیده
Gas-mediated electron beam induced etching (EBIE) and deposition (EBID) are often used to measure activation energies that are interpreted as the adsorption energies of surfaceadsorbed precursor molecules. However, the measured quantities often disagree with adsorption energies measured by conventional analysis techniques such as thermally programmed desorption, and have anomalous dependencies on parameters such as the electron beam current used to perform EBID. Here, we use the theory of EBIE and EBID rate kinetics to explain this behavior and identify conditions under which the activation energies and the associated pre-exponential factors correspond to gas molecule adsorption energies and desorption attempt frequencies, respectively. Under these conditions, EBIE and EBID can be used as robust, nano-scale techniques for the analysis of adsorbates.
منابع مشابه
TiO2/Graphene oxide nanocomposite as an ideal NO gas sensor: A density functional theory study
We performed a density functional theory investigation on the structural and electronic properties of pristine and nitrogen-doped TiO2/Graphene oxide nanocomposites as the adsorbents for the removal of toxic NO molecules in the environment. We presented the most stable adsorption configurations and examined the interaction of NO molecule with these doped and undoped nanocomposites. It turns out...
متن کاملTiO2/Graphene oxide nanocomposite as an ideal NO gas sensor: A density functional theory study
We performed a density functional theory investigation on the structural and electronic properties of pristine and nitrogen-doped TiO2/Graphene oxide nanocomposites as the adsorbents for the removal of toxic NO molecules in the environment. We presented the most stable adsorption configurations and examined the interaction of NO molecule with these doped and undoped nanocomposites. It turns out...
متن کاملThe theoretical study of adsorption of HCN gas on the surface of pristine, Ge, P and GeP-doped (4, 4) armchair BNNTs
In this research, the effects of HCN adsorption on the surface of the pristine, Ge, P, and GeP doped boron nitride nanotube (BNNTs) are investigated by using density function theory at the B3LYP/6–31G(d, p) level of theory. At the first step, we consider different configurations for adsorbing HCN molecule on the surface of BNNTs. The optimized models are used to calculate the structural, electr...
متن کاملA theoretical study on the adsorption behaviors of Ammonia molecule on N-doped TiO2 anatase nanoparticles: Applications to gas sensor devices
We have performed density functional theory investigations on the adsorption properties of ammonia molecule on the undoped and N-doped TiO2 anatase nanoparticles. We have geometrically optimized the constructed undoped and N-doped nanoparticles in order to fully understand the adsorption behaviors of ammonia molecule. For TiO2 anatase nanoparticles, the binding site is preferentially located on...
متن کاملA theoretical study on the adsorption behaviors of Ammonia molecule on N-doped TiO2 anatase nanoparticles: Applications to gas sensor devices
We have performed density functional theory investigations on the adsorption properties of ammonia molecule on the undoped and N-doped TiO2 anatase nanoparticles. We have geometrically optimized the constructed undoped and N-doped nanoparticles in order to fully understand the adsorption behaviors of ammonia molecule. For TiO2 anatase nanoparticles, the binding site is preferentially located on...
متن کامل